Stories tagged alternative energy

Using his head: On his recent trip to Africa, Presudent Obama tried out the new SOCCKET soccer ball.
Using his head: On his recent trip to Africa, Presudent Obama tried out the new SOCCKET soccer ball.Courtesy AP
Kids' soccer games in Third World nations can help provide needed power to electricity-lacking villages through this new invention of two college student. The SOCCKET puts a gyroscope inside a soccer ball, capturing kinetic energy generated by the ball's motion. That energy is stored in a battery in the ball. A cap can be popped off the ball at night exposing a socket to the battery. Thirty minutes of kids' soccer action can power a LED light for three hours. Here's we're you can learn more and see the ball in action.

http://unchartedplay.com/soccket/

May
17
2013

Solar plane: The plane Solar Impulse is making a cross-country trek over the USA.
Solar plane: The plane Solar Impulse is making a cross-country trek over the USA.Courtesy © Solar Impulse | Revillard | Rezo.ch
It's one flight down and four more to go for Solar Impulse, the completely solar airplane that's soaring its way across the USA. Solar Impulse flew from San Francisco to Phoenix on May 3, taking a shade over 18 hours to complete the trip. Over the next couple months, it will fly legs to Dallas, St. Louis, Washington D.C. and New York City with the New York trip scheduled to conclude in early July.

For the stat freaks, the solar plane averaged a speed of 40 miles an hour at an average altitude of 10,000 feet. It soared to a maximum altitude of 21,000 feet over the 650 mile trip. And yes, it took off and landed in the dark.

More information about the Solar Impulse project can be found at its website here and to follow its progress flying across the country.

So how does a solar airplane work exactly?

Made of carbon fiber, the plane has the wingspan of a Boeing 747 (208 feet) and the weight of a small car (3,527 lbs). It is the result of seven years of intense work by a team of about 80 people and 100 partners and advisors. The 12,000 solar cells built into the wing provide four 10 horsepower electric motors with renewable energy. By day the solar cells recharge lithium batteries which allow the plane to fly at night. Swiss pioneers Bertrand Piccard (chairman) and André Borschberg (CEO) are the founders, pilots and the driving forces behind Solar Impulse.

The plane made its first night flight in 2010 and has a record endurance flight of 26 hours, 10 minutes, 19 seconds.

Solar Impulse wants to inspire and motivate as many people as possible throughout its journey across America. “We want to show that with clean technologies, a passionate team and a fa-reaching pioneering vision one can achieve the impossible.” said Piccard, adding “If we all challenged certitudes by driving change and being pioneers in our everyday lives, we can create innovative solutions for society’s biggest challenges.”

Here's some more nitty gritty about the plane's specs and future:
• The electricity produced by the solar panels is about the same as needed to run a scooter for 24 hours.
• The light plane is sensitive to turbulence. Winds cannot exceed 11.5 miles per hour at take off and crosswinds at takeoff can be no more than 4.6 miles per hour.
* A second plane is now being constructed.
* Solar Impluse has a goal of making an around-the-world trip in 2015, with 2-3 day flights over continents and 4-6 day legs over oceans.

And just to prove it actually flies, here's video shot in the San Francisco skies before Solar Impulse began its USA journey.

Wind catcher: New wind turbines are getting taller and slower in order to generate more electricity.
Wind catcher: New wind turbines are getting taller and slower in order to generate more electricity.Courtesy JMT
The way technology usually works, things get smaller and faster to be more efficient. That's not the case with wind turbines. Read this interesting piece on how new innovations are making wind turbines taller (reaching up into the sky the length of a football field), the blades are getting longer and are moving slower. All of this is actually generating more electricity.

Apr
05
2011

Whooping cranes: Can't live with 'em, can't live without 'em.
Whooping cranes: Can't live with 'em, can't live without 'em.Courtesy US Fish and Wildlife
Word on the street is that Xcel Energy has canceled its $400 million, 150-megawatt wind farm project in North Dakota. (North Dakota, if I remember my geography right, is the Dakota directly … above South Dakota. I think.)

The reason Xcel is giving for the cancellation is the same one I give for never going out in the yard without a rake: birds.

The wind turbines, it seems, could pose a potential hazard to two endangered birds: the whooping crane (known to be a silent, thoughtful bird), and the piping plover (known for perching on bathroom windowsills to watch people bathe). The whooping crane is the tallest bird in North America (save that for humiliating your fiancé on trivia night), and its population has been reduced to only about 400 birds, largely due to habitat loss. The piping plover, also a victim of habitat loss, is a shore bird with a global population of just over 6,000 individuals.

Faced with a federal mandate to mitigate the threat to the birds, Xcel, like an unenthusiastic kid who just found out he’d have to bike to a lame birthday party, decided that that the wind farm scene just wasn’t worth the hassle.

It’s too bad, really. Shana explored this issue a couple weeks ago, but the long and the short of it is that it’s a doozy. On one hand, no one wants to see a five-foot-tall crane run into a windmill (if you laugh, you go to Denny’s when you die), but on the other, you have to balance that threat against the chronic environmental effects of fossil fuel use. If both species are vulnerable to habitat loss, climate change probably isn’t going to be a great thing for them. And at least in the case of the cranes, fossil fuel has an even more direct effect on them—the cranes’ only winter habitat, Aransas, Texas, is a regular spot for oil and gas drilling operations. So … they’re able to work that out, but not the North Dakota wind farm?

It kind of feels like that kid was really looking for an excuse not to go to the birthday party. But I suppose we can’t really blame it all on the kid—we should have made sure it was a better party. And, yeah, I can see how having a bunch of birds around would make for a creepy party, but if it was done right it could also be an awesome party with all those birds!

Oh, god, I don’t know what’s metaphor and what’s reality anymore.

Anyway, no more big wind turbine field in North Dakota. What do y’all think about that?

Sep
02
2010

Electricity in the air: Some of our energy needs may someday come from the atmosphere.
Electricity in the air: Some of our energy needs may someday come from the atmosphere.Courtesy wvs (Sam Javanrouh)
In a paper delivered at the 240th National Meeting of the American Chemical Society in Boston, a researcher envisioned a time in the not-too-distant future when houses and buildings outfitted with the proper equipment would be able gather electric energy stored in humidity in the atmosphere that could be used to fill a community’s electrical needs.

The concept isn’t new; electrical wunderkind Nikola Tesla had a similar idea more than a century ago.

Science has long sought the answer to how electricity builds up and discharges in the atmosphere, and whether the moisture in the atmosphere could even hold an electrical charge. But Fernando Galembeck, a professor at Brazil’s University of Campinas, claims he and his research team have successfully shown that it can, and by using special metal conduits to collect that electricity, it could allow homeowners and building managers to gather and store the electricity as an alternative energy source.

”Just as solar energy could free some households from paying electric bills, this promising new energy source could have a similar effect,” Galembeck said. He terms the new method “hygroelectricity” which means “humidity electricity”. Galembeck's research could also add to our understanding of how thunderstorms form.

In their laboratory experiments, Galembeck’s research team created a simulated atmosphere densely saturated with water (humidity), which they seeded with silica and aluminum phosphate, two chemical compounds commonly found in air. As water droplets formed around the tiny, airborne chemical substances, the researchers noticed the silica took on a negative charge while the aluminum phosphate droplets held a positive charge. The charged water vapor readily condenses upon contact with surfaces such as a cold can of soda or beer, and on the windows of air-conditioned buildings or vehicles. In the process, energy is transferred onto the contact surface.

“This was clear evidence that water in the atmosphere can accumulate electrical charges and transfer them to other materials it comes in contact with,” Galembeck said.

Just as solar panels convert energy from sunlight into a usable power source, the researchers think water vapor in the atmosphere could someday be harvested for its hygroelectric energy. The rooftops of buildings in regions of high humidity and thunderstorm activity could someday be fitted with special hygroelectric panels that would absorb the charges built up in the humid atmosphere and funnel the energy to where it can be utilized, and at the same time reduce the risk of lightning forming and discharging. The technology would be best suited to regions of high humidity, such as the tropics or the eastern and southeastern U.S.

SOURCES
ScienceDaily story
Wired story
Green Diary story

Thunderstorm over Lake Harriet in Minneapolis; Could this be a new source of energy for the Upper Midwest?

Aug
16
2010

Another tidal generator: But this one is hiding underwater. This is why I didn't know what they look like.
Another tidal generator: But this one is hiding underwater. This is why I didn't know what they look like.Courtesy Fundy
Along with wind and solar, harvesting power from tidal forces comes up a lot in discussions of alternative energy sources.

Was that a horrible sentence? I think it was. What I meant to say is this: we can generate electricity from tides, and lots of it. "Tidal power" is often brought up alongside solar power and wind power, but while I can easily picture windmills and solar panels, I'm not always sure what sort of device we'd use to harness the power in the tides.

This sort of device! For those of you too afraid to click on a strange link (who knows... I could be linking to an image like this!), the article depicts something that looks sort of like a thick, stubby windmill, with blades on its front and back. It's a tidal turbine, and at 74 feet tall and 130 tons it's the world's largest. It should be able to supply electricity to about 1,000 households. Pretty impressive.

Tidal turbines, apparently, are so productive because water is so much denser than water, and so it takes a lot more energy to move it. An ocean current moving at 5 knots (that's a little shy of 6 miles per hour, for the landlubbers) has more kinetic energy, for example, than wind moving at over 217 miles per hour.

At least according to that article, the United States and Great Britain each have enough tidal resources (areas where this kind of generator could be installed) to supply about 15% of their energy needs.

More info on the tidal turbine, which I am calling "the Kraken," because it's big, underwater, and will occupy your mind for only a very short time.

Jul
13
2010

Brown gold!: This is actually the solid byproduct of a manure-to-methane operation. As you can see, it holds no fear for the owner of this bare hand.
Brown gold!: This is actually the solid byproduct of a manure-to-methane operation. As you can see, it holds no fear for the owner of this bare hand.Courtesy kqedquest
We’ve talked about the delights of cow feces before on Science Buzz, but mid-July always puts me in the mind of “brown gold” (coincidentally, the last occasion it came up was exactly four years ago today), and any time there’s talk of turning an animal into a fuel source, I get excited. (Remember that fuel cell that ran on the tears of lab monkeys? Like that.) Why not take another look?

So here you are: another wonderful story of cows trying their best to please us, before they make the ultimate gift of allowing their bodies to be processed into hamburgers and gelatin and cool jackets.

Poop jokes aside (j/k—that’s impossible), it is a pretty interesting story. The smell you detect coming from cattle farms is, of course, largely from the tens of thousands of gallons of poop the cattle produce every day. The decomposing feces release lots of stinky methane. (Or, to be more precise, the methane itself isn’t smelly. The bad smell comes from other chemicals, like methanethiol, produced by poop-eating bacteria along with the methane.)

Aside from being, you know, gross, all of that poop is pretty bad for the environment. The methane is released into the atmosphere, where it traps heat and contributes to global warming (methane is 20 to 50 times more potent than carbon dioxide as a greenhouse gas), and the poop itself is spread onto fields as fertilizer. Re-using the poop as fertilizer is mostly a good idea, but not all of it gets absorbed into the soil, and lots of it ends up getting washed away into rivers, lakes, and streams, where it pollutes the water.

Some farms have managed to address all of these problems, and make money while doing it.

Instead of spreading the manure onto fields right away, the farms funnel all the poop into swimming pool-sized holding tanks, where it is mixed around and just sort of stewed for a few weeks. All of the methane gas produced by bacteria as it breaks down the manure is captured in tanks. What’s left is a fluffy, more or less sterile, solid that can be used as bedding for the animals, or mixed in with soil, and a liquid fertilizer that can be spread onto fields.

The methane can then be used on-site to generate electricity, either by burning it in a generator, or using it in a fuel cell. (The methane is broken apart and combined with oxygen from the air to produce electricity, water, and carbon dioxide.) A large farm will produce enough electricity to power itself and several hundred other houses. (The extra electricity is just put back into the power grid and sold to the power company.)

Whether the methane is burned or used in a fuel cell, the process still creates carbon dioxide. However, CO2 isn’t nearly as bad as methane when it comes to trapping heat, and because the original source of the carbon was from plant-based feed, the process can be considered “carbon-neutral.” (Although one might argue that the fossil fuels involved in other steps of the cattle farming process could offset this. But let’s leave that be for now. It’s complicated.)

The downside is that setting up an operation to capture and process manure, and to generate power by burning it is expensive—it took about 2.2 million dollars to do it at the farm covered in the article, with about a third of that coming from grants. Still, the byproducts (electricity, fertilizer, soil/bedding) are profitable enough that the system could pay for itself over the course of a few years.

It’s amazing, eh? Out of a cow’s butt we get soft, clean bedding, liquid fertilizer, and electricity, all without the bad smell. What a world.

Jun
11
2010

Lake Erie offshore wind potential
Lake Erie offshore wind potentialCourtesy Less Salty

Lake Erie Energy Development Corporation (LEEDCo)

LEEDCo is leading efforts to build, install, and deploy an offshore wind farm on Lake Erie. An initial five wind generators (20-megawatts, enough to power 16,000 homes) are to be located near Cleveland, Ohio, with a 2012 completion target. The expected cost is projected to be $100 million.

The 20 MW venture is just the initial phase. If the test phase is successful, LEEDCo would like to see the Lake Erie wind farm generating up to 1000 MW of energy by 2020. ConsumerEnergyReport

LEEDCo recently announced a long-term partnership with GE who will provide the 5 direct-drive wind turbines for LEEDCo’s 20-megawatt offshore wind project.

Obstacles to the Great Lakes wind project

Many hoops and hurdles need to be traversed before obtaining major financial commitments. (learn more at Cleveland.com

  • Approval from at least 16 federal and state agencies, including the U.S. Army Corp of Engineers, the Ohio Department of Natural Resources and the Public Utilities Commission of Ohio. LEEDCo has yet to file any permit applications but does meet weekly with an interagency task force, the Lake Erie Offshore Wind Team, that Strickland created 18 months ago.
  • Concerns that the turbines will harm birds and bats. A $350,000 study is under way, including radar, laser and acoustic identification of bird and bat flight paths. The proposed site will need a four-mile radius of air space in which few if any birds have been detected.
  • How to anchor the towers in Lake Erie. Engineers must determine whether to sink steel piles down to bedrock, typically some 60 to 80 feet below the "glacial till" on the lake bottom. If pilings are needed, officials are uncertain whether the region still has the capacity to produce enough of the heavy steel that would be required.
  • A way to get the power to shore. Underwater cables from the turbines to shore would need right-of-way approval from the state.
  • The impact of winter ice. Plans call for an ice cream-cone shaped foundation at the water's level, which forces the ice down and breaks it, hopefully saving on cost, LEEDCo's Wagner said.
  • A means of paying for the project. Financing details are still tenuous -- and could be more complicated than the engineering, said Wagner.
  • It's been a few summers since we introduced you to the crazy scientists who figured out you get a geyser-like reaction of adding Mentos candies to Coke products. As you can see in the video above, they've taken their work to the next level with a Mentos/Coke powered vehicle. What's next for Mentos/Coke power?

    Waterworks: How lucky we are: Clean water is not readily accessible for most of India's populations.  Finding a way to bring the life-giving stuff to Indians is half the purpose of the upcoming 2010 Acara challenge.  (The other half is bringing much-needed clean cooking fuel to India.)  Come check it out for yourself!
    Waterworks: How lucky we are: Clean water is not readily accessible for most of India's populations. Finding a way to bring the life-giving stuff to Indians is half the purpose of the upcoming 2010 Acara challenge. (The other half is bringing much-needed clean cooking fuel to India.) Come check it out for yourself!Courtesy laszlo-photo (Flickr)

    "So what?" C'mon, peeps! This is cool: eight teams from around the world are competing to launch businesses that will bring clean energy and water to India. Right here! In our backyard! You can watch the business plan presentations yourself this Monday, May 17th at the University of Minnesota's Institute on the Environment (Seminar Room 380, VoTech Building, 1954 Buford Avenue, St. Paul, MN). Check out the press release or Acara website for more details.