Stories tagged satellite imagery

Apr
12
2013

How much of terrestrial plant and animal life can humanity safely consume without seriously damaging the live-support systems of our planet? It has been challenging to answer that question because of the difficulty of measuring how much biomass is produced annually on land and how much of this yearly production humans co-opt.

Huge regional variability exists in terrestrial productivity from year to year because of heat, cold, floods and droughts but what is striking from recent reviews of more than 30 years of satellite imagery is how little global variability there is annually. Each year, terrestrial plants fix about 53.6 petagrams of biomass – a gigantic quantity but what matters is not so much the size of annual biomass production but rather that it seems to vary by only about two percent per year.

Recent estimates from satellite imagery indicate that humans now appropriate 38 percent of all terrestrial biomass generated annually. That would seem to leave 62 percent on the table for expanded human consumption but the vast majority of this biomass appears to be not harvestable because it includes root growth below ground and biomass production on lands in parks or wilderness areas that are either protected or inaccessible.

It appears likely that the upper limit for how much of terrestrial biomass that humans can co-opt annually is only about ten percent more for a total of 48 percent. Current land use patterns and projections that the global human population may reach nine billion by 2050 suggest that this 48 percent of all available terrestrial biomass may be reached within the next few decades.
Earth's primary photosnythetic productivity: The darkest green  shading in the Amazon and Southeast Asia are regions of the world where photosynthetic activity is by far the most active on an annual basis
Earth's primary photosnythetic productivity: The darkest green shading in the Amazon and Southeast Asia are regions of the world where photosynthetic activity is by far the most active on an annual basisCourtesy NASA

Oct
30
2011

Thailand Flooding from Space
Thailand Flooding from SpaceCourtesy NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team
From the NASA Image of the Day on October 28:

Since July 2011, heavy monsoon rains in southeast Asia have resulted in catastrophic flooding. In Thailand, about one third of all provinces are affected. On Oct. 23, 2011, when this image from ASTER, the Advanced Spaceborne Thermal Emission and Reflection Radiometer instrument on NASA's Terra spacecraft was acquired, flood waters were approaching the capital city of Bangkok as the Ayutthaya River overflowed its banks. In this image, vegetation is displayed in red, and flooded areas are black and dark blue. Brighter blue shows sediment-laden water, and gray areas are houses, buildings and roads. The image covers an area of 35.2 by 66.3 miles (56.7 by 106.9 kilometers) and is located at 14.5 degrees north latitude, 100.5 degrees east longitude.

With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change.